The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis.
نویسندگان
چکیده
In Arabidopsis, the basic leucine zipper transcription factor ABI5 activates several late embryogenesis-abundant genes, including AtEm1 and AtEm6. However, the expression of many other seed maturation genes is independent of ABI5. We investigated the possibility that ABI5 homologs also participate in the regulation of gene expression during seed maturation. We identified 13 ABI5-related genes in the Arabidopsis genomic sequence. RNA gel blot analysis showed that seven of these genes are active during seed maturation and that they display distinct expression kinetics. We isolated and characterized two mutant alleles of one of these genes, AtbZIP12/EEL. Unlike abi5, the eel mutations did not inhibit the expression of any of the maturation marker genes that we monitored. On the contrary, the accumulation of the AtEm1 and AtEm6 mRNAs was enhanced in eel mutant seeds compared with wild-type seeds. Gel mobility shift assays, combined with analysis of the genetic interactions among the eel and abi5 mutations, indicated that ABI5 and EEL compete for the same binding sites within the AtEm1 promoter. This study illustrates how two homologous transcription factors can play antagonistic roles to fine-tune gene expression.
منابع مشابه
ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination.
The development of a germinating embryo into an autotrophic seedling is arrested under conditions of water deficit. This ABA-mediated developmental checkpoint requires the bZIP transcription factor ABI5. Here, we used abi3-1, which is also unable to execute this checkpoint, to investigate the relative role of ABI3 and ABI5 in this process. In wild-type Arabidopsis plants, ABI3 expression and ac...
متن کاملThe Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor.
The Arabidopsis abscisic acid (ABA)-insensitive abi5 mutants have pleiotropic defects in ABA response, including decreased sensitivity to ABA inhibition of germination and altered expression of some ABA-regulated genes. We isolated the ABI5 gene by using a positional cloning approach and found that it encodes a member of the basic leucine zipper transcription factor family. The previously chara...
متن کاملIdentification of growth insensitive to ABA3 (gia3), a recessive mutation affecting ABA Signaling for the control of early post-germination growth in Arabidopsis thaliana.
The stress phytohormone ABA inhibits the developmental transition taking the mature embryo in the dry seed towards a young seedling. ABA also induces the accumulation of the basic leucine zipper (bZIP) transcription factor ABA-insensitive 5 (ABI5) which, apart from blocking endosperm rupture, also protects the embryo by stimulating the expression of late embryogenesis abundant (LEA) genes that ...
متن کاملExpressional Analysis of Stem Cell Marker SALL4 in Mesencephalon during Chicken Embryogenesis
Background SALL gene family represent a group of evolutionary conserved zinc finger transcription factors which are involved in normal development. It includes four members (SALL1 to SALL4). SALL4 has significant roles in the maintenance of pluripotency and self-renewal, efficient proliferation /stabilization and cell fate decision of embryonic stem cells (ESCs). Our aim in this study was to a...
متن کاملCharacterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation.
The Arabidopsis thaliana genome contains approximately 80 genes encoding basic leucine zipper transcription factors, divided into 11 groups. Abscisic Acid-Insensitive 5 (ABI5) is one of the 13 members of group A and is involved in ABA signalling during seed maturation, and germination. Seven other members of this group are expressed during seed maturation, but only one of them (Enhanced Em Leve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2002